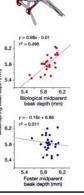
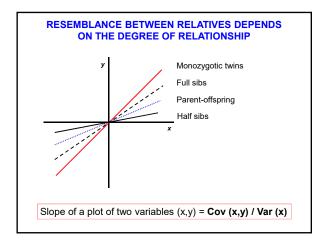




COMPONENTS OF GENETIC VARIATION

$V_{G} = V_{A} + V_{D} + V_{I}$


- The total genetic variance for a character $(\mathbf{V}_{\mathbf{G}})$ is a function of:
- Additive genetic variance (V_A) variation due to the additive effects of alleles
- Dominance genetic variation (V_D) variation due to dominance relationships among alleles
- Epistatic genetic variation (V_i) variation due to interactions among loci


DOMINANCE VERSUS ADDITIVE GENETIC VARIANCE

- Dominance variance is due to dominance deviations, which describe the extent to which heterozygotes are not exactly intermediate between the homozygotes.
- The additive genetic variance is responsible for the resemblance between parents and offspring.
- The additive genetic variance is the basis for the response to selection.

RESEMBLANCE BETWEEN RELATIVES

- When there is genetic variation for a character there will be a resemblance between relatives.
- Relatives will have more similar trait values to each other than to unrelated individuals.

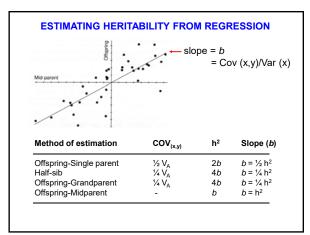
additive genetic variance dominance genetic variance variance due to shared environ	ment
Relationship	Phenotypic covariance
Monozygotic twins:	$V_A + V_D + V_{Es}$
Parent-offspring	1⁄2 V _A
Full sibs	$(\frac{1}{2} V_A) + (\frac{1}{4} V_D) + V_{Es}$
Half sibs, or Grandparent – grandchild	1⁄4 V _A

HERITABILITY

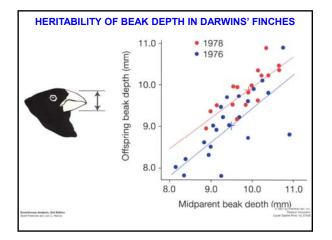
 The heritability (h²) of a trait is a measure of the degree of resemblance between relatives.

h² =

additive genetic variance (V_A) / phenotypic variance (V_P)

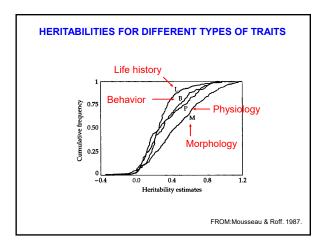

Heritability ranges from 0 to 1

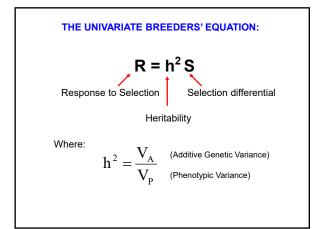
(Traits with no genetic variation have a heritability of 0)


HERITABILITY

$h^2 = V_A / V_P = V_A / (V_G + V_E)$

- Since heritability is a function of the environment (V_E), it is a *context dependent* measure.
- It is influenced by both,
- The environment that organisms are raised in, and
- The environment that they are measured in.





HERITABILITIES FOR SOME TRAITS IN ANIMAL SPECIES		
	Man Stature Serum immunoglobulin (IgG) level	<u>h² (%)</u> 65 45
	Cattle Body weight (adult) Butterfat, % Milk-yield	65 40 35
	Pigs Back-fat thickness Efficiency of food conversion Weight gain per day Litter size	70 50 40 5
	Poultry Body weight (at 32 wks) Egg weight (at 32 wks) Egg production (to 72 wks)	55 50 10
	Mice Tail length (at 6 wks) Body weight (at 6 wks) Litter size (1st litters)	40 35 20
	Drosophila melanogaster Abdominal bristle number Body size Ovary size Egg production	50 40 30 20
	IN: Falconer & Mackay. Introduct	tion to Quantitative Genetics.1996. Longman.

